Presented by:
Armand Ruby
Larry Walker Associates





### **Chronology:**

#### Caltrans Statewide Monitoring Program: initiated 1995-96

First efforts to standardize, coordinate District activities

#### Caltrans Stormwater Monitoring Protocols

First Edition: August, 1997Second Edition: July, 2000

#### Caltrans Data Reporting Protocols

First version: July, 2000 (updated annually; components added as protocols developed)

#### Caltrans Litter Monitoring Protocols

First Edition: October, 2000

#### Caltrans Toxicity Study Protocols

First Édition: October, 2001

#### Caltrans Particle/Sediment Monitoring Protocols

First Edition: due 2002 (in prep.)

### **Contributors:**

#### First Edition (August 1997):

Caltrans
Larry Walker Associates
Woodward-Clyde Consultants
CSU, Sacramento
Camp Dresser & McKee

#### Second Edition (July, 2000):

Caltrans
Larry Walker Associates
UC, Davis
CSU, Chico
CSU, Sacramento
Brown and Caldwell Consultants
Camp Dresser and McKee
LAW Crandall
Kinnetic Laboratories, Inc.
Montgomery Watson

## Caltrans Stormwater Monitoring Protocols Guidance Manual Purpose, Goals, Benefits

#### Purpose:

Establishes uniform policies and procedures

- for runoff water quality monitoring
- specific to transportation-related facilities

#### Primary Goals:

Provide consistency in monitoring methods

- among Caltrans various programs, projects, locations
- over time

Ensure production of high quality (accurate, precise) data

#### Benefits:

Provides for data comparability
Enhances data management (storage, retrieval, analysis)
Ensures data reliability

Organization

Part I: Preparing the Monitoring Plan

Part II: Implementing the Monitoring Plan

Inherent concept:

All monitoring projects will have written methods/procedures

### Part I: Preparing the Monitoring Plan

- Develop Purpose and Objectives
- Site Selection
- Constituent Selection
- Selection of Monitoring Methods and Equipment
- Sampling and Analysis Plan

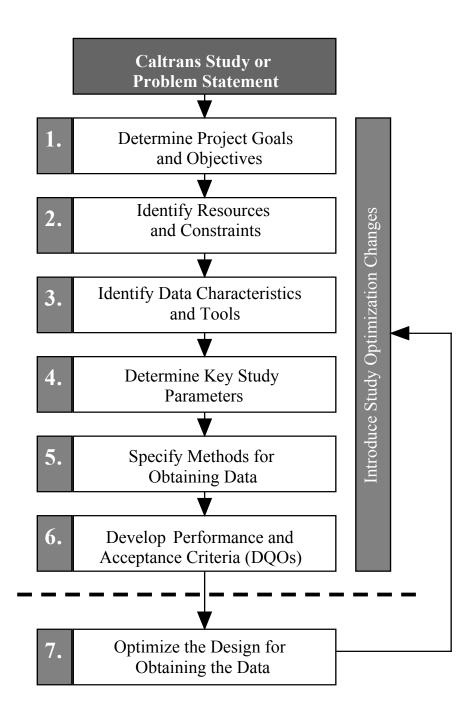



Figure 2-1. Systematic Planning Process Flow Chart

Part I: Preparing the Monitoring Plan

### Site Selection

- Representativeness
- Personnel Safety
- Site Access
- Equipment Safety
- Flow Measurement Capability
- Electrical Power and Telephone
- Non-Caltrans Sources
- BMP Effectiveness
- Site Visit

Figure 4-1. Flow chart of constituent selection process

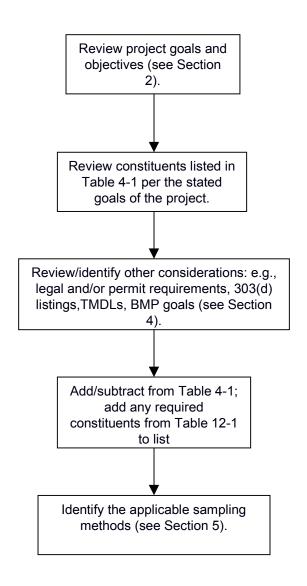



Table 4-1. Minimum Constituent List for Characterization (1)

|                                          | Units    | RL                  |  |  |  |  |
|------------------------------------------|----------|---------------------|--|--|--|--|
| Constituent/Parameter name               |          |                     |  |  |  |  |
| Conventional                             |          |                     |  |  |  |  |
| Conductivity                             | μmhos/cm | ±1 <sup>(2)</sup>   |  |  |  |  |
| Hardness as CaCO <sub>3</sub>            | mg/L     | 2                   |  |  |  |  |
| рН                                       | pH Units | ±0.1 <sup>(2)</sup> |  |  |  |  |
| Temperature                              | °C       | ±0.1 <sup>(2)</sup> |  |  |  |  |
| Total Dissolved Solids (TDS)             | mg/L     | 1                   |  |  |  |  |
| Total Suspended Solids (TSS)             | mg/L     | 1                   |  |  |  |  |
| Dissolved Organic Carbon (DOC)           | mg/L     | 1                   |  |  |  |  |
| Total Organic Carbon (TOC)               | mg/L     | 1                   |  |  |  |  |
| Nutrients                                |          |                     |  |  |  |  |
| Nitrate as Nitrogen (NO <sub>3</sub> -N) | mg/L     | 0.1                 |  |  |  |  |
| Total Kjeldahl Nitrogen (TKN)            | mg/L     | 0.1                 |  |  |  |  |
| Total Phosphorous                        | mg/L     | 0.03                |  |  |  |  |
| Dissolved Ortho-Phosphate                | mg/L     | 0.03                |  |  |  |  |
| Metals (total recoverable and dissolved) |          |                     |  |  |  |  |
| Arsenic (As)                             | μg/L     | 1                   |  |  |  |  |
| Cadmium (Cd)                             | μg/L     | 0.2                 |  |  |  |  |
| Chromium (Cr)                            | μg/L     | 1                   |  |  |  |  |
| Copper (Cu)                              | μg/L     | 1                   |  |  |  |  |
| Lead (Pb)                                | μg/L     | 1                   |  |  |  |  |
| Nickel (Ni)                              | μg/L     | 2                   |  |  |  |  |
| Zinc (Zn)                                | μg/L     | 5                   |  |  |  |  |
| Organic Compounds <sup>(3)</sup>         |          |                     |  |  |  |  |
| Diuron                                   | μg/L     | 1                   |  |  |  |  |
| Glyphosate                               | μg/L     | 5                   |  |  |  |  |
| Oryzalin                                 | μg/L     | 1                   |  |  |  |  |
| Oxadiazon                                | μg/L     | 0.05                |  |  |  |  |
| Triclopyr                                | μg/L     | 0.1                 |  |  |  |  |

<sup>(1)</sup> For analytical methods and other specifications, see *Table 12-1* in *Section 12*.

<sup>(2)</sup> Refers to instrument resolution.

<sup>(3)</sup> Analysis for the listed herbicides applies to Caltrans statewide characterization monitoring only; this analysis may not be appropriate or necessary for other types of projects.

Part I: Preparing the Monitoring Plan

Selection of Monitoring Methods and Equipment

- Sample Collection Methods
- Sample Collection Equipment
- Flow Measurement Methods and Equipment
- Precipitation Measurement
- System Integration
- System Command/Control
- Remote Communication
- Data Management

Part I: Preparing the Monitoring Plan

Selection of Monitoring Methods and Equipment

- Flow-proportioned composites preferred
  - Best representation of quality throughout event
  - Analytical results represent "EMC"
- Use automated equipment when feasible
  - Typical set-up: Autosampler, flow meter, rain gauge, datalogger, modem

### Part II: Implementing the Monitoring Plan

- Equipment Installation and Maintenance
- Training
- Preparation and Logistics
- Sample Collection
- Quality Assurance/Quality Control
- Laboratory Sample Preparation and Analytical Methods
- QA/QC Data Evaluation
- Data Reporting Protocols

Part II: Implementing the Monitoring Plan

Sample Collection

Clean Sampling Techniques

Reduce potential sample contamination:

- At least two persons, wearing clean, powder-free nitrile gloves at all times, are required on a sampling crew.
- Clean techniques must be employed whenever handling containers or equipment used for collection of samples for trace metals or organics analysis.

Part II: Implementing the Monitoring Plan

Sample Collection

#### Sampling Event Representativeness Criteria

**Table 10-1. Monitoring Event Representativeness Requirements** 

| Total Event<br>Precipitation | Minimum Acceptable Number<br>of Aliquots | Percent Capture<br>Requirement |  |
|------------------------------|------------------------------------------|--------------------------------|--|
| 0-0.25"                      | 6                                        | 85                             |  |
| 0.25-0.5"                    | 8                                        | 80                             |  |
| 0.5-1"                       | 10                                       | 80                             |  |
| >1"                          | 12                                       | 75                             |  |

### **Example QC Sample Schedule**

| Site       | Pre-Season                                   | Event #1                 | Event #2                | Event #3                 | Event #4                |
|------------|----------------------------------------------|--------------------------|-------------------------|--------------------------|-------------------------|
| Site 1     |                                              | MS/MSD                   |                         | Field Duplicate (Site C) | Field Blank<br>(Site B) |
| Site 2     | Equipment Blank (Site A1)                    | Field Blank<br>(Site B)  | MS/MSD                  |                          | Lab Duplicate           |
| Site 3     |                                              | Field Duplicate (Site C) | Field Blank<br>(Site B) | MS/MSD                   |                         |
| Site 4     | Equipment<br>Blank<br>(Site A2)              |                          | Lab Duplicate           | Field Blank<br>(Site B)  | MS/MSD                  |
| Laboratory | Composite bottle blank; sample bottle blanks |                          |                         |                          |                         |

Part II: Implementing the Monitoring Plan

### QA/QC Data Evaluation

- Initial Data Quality Screening
  - Verify consistency: SAP/COC/Lab Reports
  - Check lab report completeness
  - Check for obvious errors: typos/incongruities
- Data Quality Evaluation
  - Reporting Limits
  - Holding Times
  - Contamination (blanks)
  - Accuracy (spikes)
  - Precision (duplicates)

### Other Caltrans Data Management Tools (available on CD)

### Hydrologic Utility

- Produce event hydrograph and
- evaluate compliance with representativeness criteria

### Lab EDD Error Checker and Automated Data Validation Software

- Checks electronic lab reports for errors and
- Compares results to DQOs

### Data Analysis Tool

- Produces descriptive statistics
- Handles non-detect values

# Caltrans Monitoring Protocols – Master Guidance Manual (DRAFT)

#### Contains:

- Stormwater Quality Monitoring Protocols
- Particle/Sediment Monitoring Protocols
- Litter Monitoring Protocols
- Toxicity Study Protocols
- Caltrans Data Reporting Protocols

(2 copies available for viewing)

### Caltrans Stormwater Program web site:

http://www.dot.ca.gov/hq/env/stormwater/index.htm

### Special Documents web site:

http://www.dot.ca.gov/hq/env/stormwater/special/index.htm

Select: Caltrans Guidance Manual: Storm Water Monitoring Protocols



